Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Table of Content

...

Ports

Direction

Type

Description

REF

In

std_logic

Reference clock input

Connectivity: semi-dedicated clock inputs, clock trees (low skew network)

Note: If REF pin is connected to a PAD, please declare the pad with Turbo mode enabled.

FBK

In

std_logic

External FeedBack input

Connectivity: semi-dedicated clock inputs, clock trees (low skew network)

VCO

Out

std_logic

VCO output : Fvco = fbk_intdiv * 2**(fbk_div_on - ref_div_on + 1) * clk_ref_freq

Connectivity: WFG inputs

D1…D3

Out

std_logic

Divided clocks. Fvco frequency divided by 1, 2, 4, 8, 16, 32, 64 or 128

Important note: D1, D2 and D3 outputs are reset while PLL RDY is not asserted.

Connectivity: WFG inputs

OSC

Out

std_logic

Internal 200 MHz oscilator

Connectivity :WFG inputs, delay calibration system

RDY

Out

std_logic

High when PLL is locked

Connectivity: RDY inputs of WFGs, fabric…

...

Ports

Direction

Type

Description

REF

In

std_logic

Reference clock input

Connectivity: semi-dedicated clock inputs, clock trees (low skew network)

Note: If REF pin is connected to a PAD, please declare the pad with Turbo mode enabled.

FBK

In

std_logic

External FeedBack input

Connectivity: semi-dedicated clock inputs, clock trees (low skew network)

R

In

std_logic

Active high Reset input. Must be activated when REF input frequency changes to force a re-locking process of the PLL

VCO

Out

std_logic

VCO output:

- Internal feedback: Fvco = 2 * (fbk_intdiv + 2) * clk_ref_freq / (ref_intdiv + 1)

- External feedback: Fvco = (pattern_end + 1) / n_sim_pat * clk_ref_freq / (ref_intdiv + 1)

Where n_sim_pat is the number of similar patterns sequence found in pattern_end+1 MSB bits of pattern.

REFO

Out

std_logic

Output of the REFerence divider. The division factor is set by the generic “ref_intdiv”

LDFO

Out

std_logic

Output of the FBK_INTDIV divider. The division factor is set by the generic ‘fbk_intdiv”

DIVP1

Out

std_logic

This output delivers a divided VCO frequency (by a power of 2). The division factor is set by the generic “clk_divoutp1”

DIVP2

Out

std_logic

This output delivers a divided VCO frequency (by a power of 2). The division factor is set by the generic “clk_divoutp2”

DIVP3

Out

std_logic

This output delivers a divided VCO frequency (by a power of 2). The division factor is set by the generic “clk_divoutp3o2”

DIVO1

Out

std_logic

This output delivers a divided VCO frequency (by an odd factor). The division factor is set by the generic “clk_divouto1”

DIVO2

Out

std_logic

This output delivers a divided VCO frequency (by an odd factor). The division factor is set by the generic “clk_divoutp3o2”

OSC

Out

std_logic

200 MHz coming from 400MHz internal oscilator

Connectivity :WFG inputs, delay calibration engine

PLL_LOCKED

Out

std_logic

High when PLL is locked

Connectivity: RDY inputs of WFGs, fabric…

CAL_LOCKED

Out

std_logic

High when the automatic calibration procedure of the current FPGA quarte area is complete

Connectivity: fabric

...

Name

Index

Description

CO_SEL

19

Carry out MUX for CO and CCO outputs

‘0’ : Select CO37

‘1’ : Select CO49

ALU_DYNAMIC_OP

18

ALU Dynamic Operation

‘0’: use raw_config3 as ALU operation

‘1’: use D1…D6 as ALU operation

SATURATION_RANK

17:12

MSB position for saturation and overflow

Signed : “100000” for range -2**31 32 to ( 2**31)-1 32

Unsigned : “100000” for range 0 to (2**32)-+1

Max value = “110111” (55)

ENABLE_SATURATION

11

‘0’: disable, ‘1’: enable

Z_FEEDBACK_SHL12

10

Shift of the Z output for feedback

‘0’ : No shift

‘1’ : 12-bit left shift

MUX_Z

9

Selection for Z output

‘0’ : ALU

‘1’ : PR_Y

MUX_CI

8

Carry in MUX

‘0’ : CI input

‘1’ : CCI cascade input

MUX_Y

7

Y operand MUX

‘0’ : MULT

‘1’ : Concat (B, A)

MUX_X

6:5

X operand MUX

“00” : C (sign extended to 56-bit)

“01” : CZI

“11” : CZI(43:0] & C(11:0]

“10” : Z (12-bit left shifted or not)

MUX_P

4

Pre-adder/ B MUX (to multiplier)

‘0’ : B (sign extended)

‘1’ : Pre-adder

MUX_B

3

B input MUX

‘0’ : Select B input port

‘1’ : Select CBI input

MUX_A

2

A input MUX.

‘0’ : Select A input port

‘1’ : Select CAI input

PRE_ADDER_OP

1

Pre-adder operation

‘0’ : add (performs B + D)

‘1’ : subtract (performs B - D)

SIGNED_MODE

0

‘0’ : unsigned, ‘1’: signed

...