Skip to end of metadata
Go to start of metadata

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 8 Next »

This document aims to list all the the nxpython methods available to apply timing constraints on a design

addFalsePath(from_list, to_list)

/ ! \ DEPRECATED / ! \ Please use setFalsePath instead, with the same key arguments

This method is used to specify the false path for the timing paths. This constraint is used by timing driven algorithms and static timing analysis.

Arguments:

Name

Type

Description

from_list

string

the command which specifies how to get a timing path starting points. A valid timing starting point is an input port or a register. A valid command can be: getPort(port_name), getPorts(name_expression),  getRegister(register_name), getRegisters(name_expression),  getRegistersByClock(clock_name)

to_list

string

the command which specifies how to get a timing path ending points. A valid timing ending point is an output port or a register. A valid command can be: getPort(port_name), getPorts(name_expression),  getRegister(register_name), getRegisters(name_expression),  getRegistersByClock(clock_name)

Example:

project = createProject()
project.load('routed.nym')
project.addFalsePath('getRegister('UUT1|Gen_seq[3].seq_i|temp_reg[1]')','getRegister('UUT2|dout_reg[61]')')
project.addFalsePath('getRegistersByClock(clk1)','getRegistersByClock(clk2)')
project.addFalsePath('getRegister(cpt_in_p_reg[0])','')
project.addFalsePath('getPort(cpt_in[0])','getRegisters("cpt_in_p_reg[`[0-3]`]")')
project.addFalsePath('getPorts("cpt_in[`[0-3]`]")', 'getRegistersByClock(clk2)')
project.addFalsePath('getRegistersByClock(clk1)', 'getWFGOutput(i_WFG_0)')

In order to match with all registers, it is possible to specify empty string ('') for parameters from_list or to_list.

addMaxDelayPath(from_list, to_list, delay)

/ ! \ DEPRECATED / ! \ Please use setMaxDelay instead, with the same key arguments

This method is used to specify the maximum delay path for the timing paths. It is used by timing driven algorithms and static timing analysis.

Arguments:

Name

Type

Description

from_list

string

the command which specifies how to get a timing path starting points. A valid timing starting point can be either an input port or a register. A valid command can be: getPort(port_name), getPorts(name_expression),
getRegister(register_name), getRegisters(name_expression), getRegistersByClock(clock_name)

to_list

string

the command which specifies how to get a timing path ending points. A valid timing ending point can be either an output port or a register. A valid command can be: getPort(port_name), getPorts(name_expression),
getRegister(register_name), getRegisters(name_expression), getRegistersByClock(clock_name)

delay

float

the required maximum delay value in ns for specified paths.

Example:

project = createProject()
project.load('routed.nym')
project.addMaxDelayPath('getRegister('UUT1|Gen_seq[3].seq_i|temp_reg[1]')', 'getRegister('UUT2|dout_reg[61]')', 3.9)
project.addMaxDelayPath('getPort(cpt_in[0])', 'getRegister(i_cpt_1|s_cpt_out_reg[1])', 8.0)         
project.addMaxDelayPath('getRegister(i_cpt_0|s_cpt_out_reg[0])','getRegister(i_cpt_1|s_cpt_out_reg[1])', 4.0) 
project.addMaxDelayPath('getPorts("cpt_in[`[1-3]`]")','getRegister(i_cpt_1|s_cpt_out_reg[1])', 8.0)  
project.addMaxDelayPath('getRegisters("i_cpt_0\|s_cpt_out_reg[`[1-3]`]")', 'getRegister(i_cpt_1\|s_cpt_out_reg[1])', 8.0)

addMinDelayPath(from_list, to_list, delay)

/ ! \ DEPRECATED / ! \ Please use setMinDelay instead, with the same key arguments.

This method is used to specify the minimum delay path for the timing paths. It is used by timing driven algorithms and static timing analysis.

Arguments:

Name

Type

Description

from_list

string

the command which specifies how to get a timing path starting points. A valid timing starting point can be either an input port or a register. A valid command can be: getPort(port_name), getPorts(name_expression),
getRegister(register_name), getRegisters(name_expression), getRegistersByClock(clock_name)

to_list

string

the command which specifies how to get a timing path ending points. A valid timing ending point can be either an output port or a register. A valid command can be: getPort(port_name), getPorts(name_expression),
getRegister(register_name), getRegisters(name_expression), getRegistersByClock(clock_name)

delay

float

the required minimum delay value in ns for specified paths.

Example:

project = createProject()
project.load('routed.nym')
project.addMinDelayPath(getRegister('UUT1|Gen_seq[3].seq_i|temp_reg[23]'), getRegister('UUT1|Gen_seq[3].seq_i|temp_reg[22]'), 1.2)
project.addMinDelayPath(getPort(cpt_in[0]), getRegister(i_cpt_1|s_cpt_out_reg[1]), 8.0)
project.addMinDelayPath(getRegister(i_cpt_0|s_cpt_out_reg[0]), getRegister(i_cpt_1|s_cpt_out_reg[1]), 8.0)
project.addMinDelayPath(getPorts("cpt_in[`[1-3]`]"), getRegister(i_cpt_1|s_cpt_out_reg[1]), 8.0)
project.addMinDelayPath(getRegisters("i_cpt_0\|s_cpt_out_reg[`[1-3]`]"), getRegister(i_cpt_1\|s_cpt_out_reg[1]), 8.0)

addMulticyclePath(from_list, to_list, cycle_count)

/ ! \ DEPRECATED / ! \ Please use setMulticyclePath instead, with the same key arguments.

This method is used to specify the multicycle path for the timing paths. It is used by timing driven algorithms and static timing analysis.

Arguments:

Name

Type

Description

from_list

string

the command which specifies how to get a timing path starting points. A valid timing starting point can be either an input port or a register. A valid command can be: getPort(port_name), getPorts(name_expression),
getRegister(register_name), getRegisters(name_expression), getRegistersByClock(clock_name).
Valid ports mush be constrained by 'setInputDelay'.

to_list

string

the command which specifies how to get a timing path ending points. A valid timing ending point can be either an output port or a register. A valid command can be: getPort(port_name), getPorts(name_expression),
getRegister(register_name), getRegisters(name_expression), getRegistersByClock(clock_name).
Valid ports must be constrained by 'setOutputDelay'.

cycle_count

unsigned

An unsigned value that represents a number of cycles the data path must have for setup check.

Example:

project = createProject()
project.load('routed.nym')
project.addMulticyclePath('getRegister('UUT1|Gen_seq[3].seq_i|temp_reg[1]')', 'getRegister('UUT2|dout_reg[61]')', 2)
project.addMulticyclePath('getRegisters("i_cpt_0\|s_cpt_out_reg[`[1-3]`]")', 'getRegister(i_cpt_1\|s_cpt_out_reg[1])', 2)

createClock( )

/ ! \ DEPRECATED / ! \ Please use createClock(target = ‘target', name = ‘name’, period = ]0, ], rising = [0,period[, falling = ]rising, rising+period]) instead.

This method is used to create a clock constraint at a timing point. This constraint is used by timing driven algorithms and static timing analysis. Depending on the unit defined in the project, timings are in ns or ps.

Signatures:

createClock(target, name, period)

createClock(target, name, period, rising)

createClock(target, name, period, rising, falling)

Arguments:

Name

Type

Description

target

string

the query which specifies how to get a clock related point. A valid query can be: getPort(port_name), getRegisterClock(register_name) or getRegister(register_name), getClockNet(clock_net_name).

name

string

user clock name of the created clock.

period

float

the period value.

rising

float

specific rising edge for clock waveform. Range [0, period[ (the default value is 0)

falling

float

specific falling edge for clock waveform. Range ]rising, rising + period] (default value is period/2)

The name of the clock net is case sensitive

Example:

In the example above, to define a 100MHz clock for net “Clk”, the following three commands are equivalent :

project = createProject()
project.load('routed.nym')
project.createClock('getRegisterClock(reg1)', 'clk', 10)
or 
project.createClock('getPort(Clk)', 'clk', 10)
or 
project.createClock('getClockNet(Clk)', 'clk', 10, 0, 5)

createClock( target = ‘target', name = ‘name’, period = ]0, ], rising = [0,period[, falling = ]rising, rising+period] )

This method is used to create a clock constraint at a timing point. This constraint is used by timing driven algorithms and static timing analysis. Depending on the unit defined in the project, timings are in ns or ps.

Arguments:

Name

Type

Description

target

string

Mandatory. The query which specifies how to get a clock related point. A valid query can be: getPort(port_name), getRegisterClock(register_name) or getRegister(register_name), getClockNet(clock_net_name).

name

string

Optional. User clock name of the created clock, default name is target_str

period

float

Mandatory. Period for the clock waveform. Must be positive, default value is period/2

rising

float

Mandatory if falling is defined. Otherwise, it is optional. Rising edge for the clock waveform. The range is defined as [0, period[ The default value is 0.

falling

float

Optional. Falling edge for the clock waveform. The range is defined as ]rising, rising + period]. The default value is period/2.

Example:

In the example above, to define a 100MHz clock for net “Clk”, the following three commands are equivalent :

project = createProject()
project.load('routed.nym')
project.createClock(target = 'getRegisterClock(reg1)', name = 'Clk', period = 10)
or 
project.createClock(target = 'getPort(Clk)', name = 'Clk', period = 10)
or 
project.createClock(target = 'getClockNet(Clk)', name = 'Clk', period = 10, rising = 0, falling = 5)

createGeneratedClock(source, target, name, relationship)

/ ! \ DEPRECATED / ! \ Please use createGeneratedClock(source = ‘source', target = ‘target’, name = 'name', key = value) instead.

This method is used to create an internal generated clock constraint at a timing point. This constraint is used by timing driven algorithms and static timing analysis.

Arguments:

Name

Type

Description

source

string

The command which specifies how to get a source clock related point. A valid command can be: getClock(), getPort(port_name), getRegisterClock(register_name), getRegister(register_name), getClockNet(clock_net_name), getWFGOutput(wfg_name)

target

string

The command which specifies how to get a clock related point. A valid command can be: getRegisterClock(register_name), getRegister(register_name)), getClockNet(clock_net_name)

name

string

User clock name of the generated clock

relationship

dictionary

The relationship for computing clock wave of the generated clock from the master clock. All valid parameter can be:

MultiplyBy : unsigned

DivideBy : unsigned

DutyCycle : unsigned (1 to 99)

Phase : unsigned (0 to 359)

Offset : integer  (delay in ns)

Edges : list  [unsigned, unsigned, unsigned] (in non-decreasing order)

EdgeShift : list  [integer, integer, integer] (delay in ns)

Frequency-based and edge-based relationships are mutually exclusive.

Example:

In the example above, the master clock "Clk" was created as 100MHz and the generated clock "clk1" is divided by 2 from the master clock. But note that the "clk_reg" is driven by the falling edge of master clock, the relation between the master clock and the generated clock is shown in the diagram below:

project = createProject()
project.load('routed.nym')
project.createClock(getPort('Clk'), 'Clk', 10)
project.createGeneratedClock('getRegisterClock(clk_reg)', 'getRegisterClock(reg2)', 'clk1', {'DivideBy': 2})
or
project.createGeneratedClock('getClock(Clk)', 'getRegisterClock(reg2)', 'clk1', {'Edges': [2, 4, 6]})

The following script is incorrect in this case:

########### INCORRECT SCRIPT ##########

project.createGeneratedClock(getClock('Clk'),getRegisterClock('reg2'), 'clk1', {'DivideBy': 2})

The diagram of the above command would be:

createGeneratedClock(source = ‘source', target = ‘target’, name = 'name', key = value)

This method is used to create an internal generated clock constraint at a timing point. This constraint is used by timing driven algorithms and static timing analysis.

Arguments:

Name

Type

Description

source

string

Mandatory. The command which specifies how to get source clock related point. A valid command can be: getClock(), getPort(port_name), getRegisterClock(register_name), getRegister(register_name), getClockNet(clock_net_name), getWFGOutput(wfg_name)

target

string

Mandatory. The command which specifies how to get a clock related point. A valid command can be: getRegisterClock(register_name), getRegister(register_name)), getClockNet(clock_net_name)

name

string

User clock name of the generated clock

Parameters for computing clock wave of generated clock from master clock can be:

Key

Type

Description and value

multiplyBy

int

Period multiplication factor. The value must be greater or equal to 1. Default value is 1

divideBy

int

Period division factor. The value must be greater or equal to 1. Default value is 1

dutyCycle

int

Duty cycle of clock period. The range must be from 1 to 99. Default value is 50.0

phase

unsigned

The range must be from 0 to 359

invert

boolean

Invert the clock signal (~ phase = 180)

offset

float

Offset for rising edge

edges

int list

Specifies the edges of the master clock to use in defining transitions on the generated clock. List in non-decreasing order. Mutually exclusive with 'multiplyBy' or 'divideBy'

edgeShift

float list

Shifts the edges of the generated clock by the specified values relative to the master clock. Mutually exclusive with 'multiplyBy' or 'divideBy'

Frequency-based and edge-based relationships are mutually exclusive.

Example:

In the example above, the master clock "Clk" was created as 100MHz and the generated clock "clk1" is divided by 2 from the master clock. But note that the "clk_reg" is driven by the falling edge of master clock, the relation between the master clock and the generated clock is shown in the diagram below:

project = createProject()
project.load('routed.nym')
project.createClock(source = 'getPort(Clk)', name = 'Clk', period = 10)
project.createGeneratedClock(source = 'getRegisterClock(clk_reg)', target = 'getRegisterClock(reg2)', name = 'clk1', divideBy = 2)
or 
project.createGeneratedClock(source = 'getClock(Clk)', target = getRegisterClock(reg2)', name = 'clk1', edges = [2, 4, 6])

The following script is incorrect in this case:

########### INCORRECT SCRIPT ##########

project.createGeneratedClock(source = 'getClock(Clk)', target ='getRegisterClock(reg2)', name ='clk1', divideBy = 2)

The diagram of the above command would be:

developCKGs()

This method automatically creates a generated clock constraint on each output of the PLLs and WFGs in current project. This constraint is used by timing driven algorithms and static timing analysis.

This method takes no argument.

developCKGs() allows the user to create generated clocks for CKGs output pins. For example, before activating a generated clock which is based on a clock driven by a WFG, user needs to launch this method for generating the base clock. Without this method, nxmap automatically derives a clock on each output of the CKGs after activating all of the given timing constraints.

Example:

project = createProject()
project.load('routed.nym')
project.createClock(target = 'getClockNet(CLK)', name ='clk', period = 8, rising = 0, falling = 4)
project.developCKGs()
project.createGeneratedClock(source = 'getWFGOutput(wfg_clk[1])', target= 'getRegister(data_reg[0])', name='clk1_div2', divideBy = 2)

setAnalysisConditions(conditions)

/ ! \ DEPRECATED / ! \ Please use setAnalysisConditions(conditions = 'conditions') instead.

This method is used to specify the chip conditions for static timing analysis. This constraint is used by timing driven algorithms and static timing analysis.

Arguments:

Name

Type

Description

conditions

string

the command which specifies the conditions for static timing analysis.

Example:

project.setAnalysisConditions(WorstCase)

setAnalysisConditions(conditions = 'conditions')

This method is used to specify the chip conditions for the static timing analysis. This constraint is used by timing driven algorithms and static timing analysis.

Arguments:

Name

Type

Description

conditions

string

the command which specifies the conditions for static timing analysis.

Example:

project.setAnalysisConditions(conditions = 'worstcase')

setCaseAnalysis(value, net_list)

/ ! \ DEPRECATED / ! \ Please use setCaseAnalysis(value = ‘value', netList = 'netList’) instead.

This method is used to specify a constant logic value to the given tests. This constraint is used by timing driven algorithms and static timing analysis.

Arguments:

Name

Type

Description

value

unsigned

The valid constant. Values can be 0 or 1

net_list

string

The command which specifies how to get one or several nets. A valid command can be getNet(net_name), getNets(net_name_expression), getPort(port_name), getPorts(port_name_expression)

Setting a case value on a net results in disabling timing analysis through the emitter pin and all the receiver pins of the net. It means that timing paths through those pins are not considered. The constant value is propagated through the network as long as a controlling value for the traversed logic is at the constant value.

Example:

In the example above, two clocks (clk[0] and clk[1]) are connected to the inputs of the multiplexer, but only clk[1] is propagated through the output after setting the constant value on the selection signal (sel).

 project = createProject()
 project.load('routed.nym')
 project.setCaseAnalysis(1, 'getNet(sel)')

setCaseAnalysis(value = ‘value', netList = 'netList’)

This method is used to specify a constant logic value to the given tests. This constraint is used by timing driven algorithms and static timing analysis.

Arguments:

Name

Type

Description

value

unsigned

The valid constant. Values can be 0 or 1

netList

string

The command which specifies how to get one or several nets. A valid command can be: getNet(net_name), getNets(net_name_expression), getPort(port_name), getPorts(port_name_expression)

Setting a case value on a net results in disabling timing analysis through the emitter pin and all the receiver pins of the net. It means that timing paths through those pins are not considered. The constant value is propagated through the network as long as a controlling value for the traversed logic is at the constant value.

Example:

In the example above, two clocks (clk[0] and clk[1]) are connected to the inputs of the multiplexer, but only clk[1] is propagated through the output after setting the constant value on the selection signal (sel).

project = createProject()
project.load('routed.nym')
project.setCaseAnalysis(value = '1', netList = 'getNet(sel)')

setClockGroup(group1_list, group2_list, option)

/ ! \ DEPRECATED / ! \ Please use setClockGroup(group1 = ‘group1’, group2 = ‘group2', option = 'option’) instead.

This method is used to specify which clocks are not related. This constraint is used by timing driven algorithms and static timing analysis. 

A clock cannot be in a different group from itself.

Arguments:

Name

Type

Description

group1_list

string

The argument which specifies how to get a group of clocks. A valid clock should be a clock created by command createClock. A valid argument can be: getClock(clock_name) and getClocks(name_expression).

group2_list

string

same as the argument "group1_list"

option

string

a valid option can be 'asynchronous' or 'exclusive': Asynchronous clocks are those that are completely unrelated. Exclusive clocks are not actively used in the design at the same time

Example:

project = createProject()
project.load('routed.nym')
project.createClock('getRegister(UUT1\|Gen_seq[2].seq_i\|temp_reg[13])', 'clk1', 2.7)
project.createClock('getClockNet(CLOCK[2])', 'clk2', 5, 0, 2)    
project.setClockGroup('getClock(clk1)', 'getClock(clk2)', 'exclusive')

setClockGroup(group1 = ‘group1', group2= ‘group2’, option = 'option’)

This method is used to specify which clocks are not related. This constraint is used by timing driven algorithms and static timing analysis. 

A clock cannot be in a different group from itself.

Arguments:

Name

Type

Description

group1

string

Mandatory. The argument which specifies how to get a group of clocks. A valid clock should be a clock created by command createClock. A valid argument can be: getClock(clock_name) and getClocks(name_expression).

group2_list

string

Mandatory. Same as the argument "group1_list"

option

string

Mandatory. A valid option can be 'asynchronous' or 'exclusive': Asynchronous clocks are those that are completely unrelated. Exclusive clocks are not actively used in the design at the same time

Example:

project = createProject()
project.load('routed.nym')
project.createClock(name ='clk1', period = 2.7, target= 'getRegister(UUT1\|Gen_seq[2].seq_i\|temp_reg[13])')
project.createClock(name = 'clk2', period = 5, rising = 0, falling = 2, target= 'getClockNet(CLOCK[2])')    
project.setClockGroup(group1 = 'getClock(clk1)', group2 = 'getClock(clk2)', option = 'exclusive')

  • No labels